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Abstract

This study presents an innovative approach to anomaly detection using diffusion
models, focusing on multi-class defect classification in industrial quality control.
The primary objective was to develop a robust system distinguishing defective and
non-defective items across multiple defect categories. Our methodology involves
fine-tuning a state-of-the-art stable diffusion model on an industrial dataset and
optimizing it for defect detection and classification. The approach implements
advanced techniques to estimate the likelihood of a sample being normal versus
defective, drawing from recent developments in generative models. Our evaluation
shows the performance of this diffusion-based anomaly detector and involves a two-
stage approach: first, training the model to generate images across all defect classes
and the non-defect class; second, during testing, utilizing the model to analyze and
classify input images. Results indicate superior performance in detecting subtle
and complex defects compared to conventional computer vision techniques. The
significance of this work lies in its potential to enhance quality control processes in
manufacturing, particularly in scenarios where defects are diverse and challenging
to categorize. This project contributes to industrial inspection by demonstrating
the effectiveness of generative models in multi-class anomaly detection, paving the
way for more accurate and adaptable quality control systems.

Quality control is a crucial aspect of manufacturing, especially in industries where products must
meet stringent standards. Automated defect detection, a key component of quality control, has
traditionally relied on rule-based methods or discriminative computer vision models to identify
defects in manufactured items. However, these approaches often struggle when dealing with complex
or subtle defects, and are limited in their ability to generalize to new types of defects not explicitly
represented in the training data. As a result, there is a growing need for more adaptable and robust
methods in quality control to handle the diversity and complexity of defects that arise in industrial
settings.

Recent advancements in generative models, particularly diffusion models, have opened new avenues
for image synthesis and anomaly detection. Diffusion models, such as the denoising diffusion
probabilistic models (DDPMs) (1) and stable diffusion models (2)), are powerful tools for generating
high-fidelity images that capture intricate details. These models have demonstrated exceptional
performance in various tasks, from inpainting to zero-shot classification. Notably, diffusion models
can be conditioned on prompts or class labels to generate images that align closely with specified
characteristics. This conditional generative capacity offers a promising approach for defect detection,
as the model can be trained to generate images of normal and defective items across multiple defect
types, enabling it to classify anomalies in a multi-class setting.

In this study, we initially aimed to present a diffusion-based framework for defect detection in
industrial quality control, leveraging the generative capabilities of stable diffusion models. Our



approach was designed to address the complexity of detecting diverse types of defects across different
regions of a product through a two-stage process. First, we intended to train the diffusion model to
generate images representing various defect classes and the non-defective class; second, we planned
to use the model’s ability to predict defect likelihoods to classify new, unseen items. However, despite
our efforts, we were unable to obtain satisfactory results in the first stage, which hindered our progress
to the second stage.

Although we were unable to achieve our initial goals, this study highlights the challenges and
limitations of applying diffusion models to industrial defect detection. Our experience underscores
the need for further research into data preprocessing, model architecture, and training strategies to
overcome the hurdles we encountered. As a future direction, we plan to explore alternative solutions,
including different data preprocessing techniques and diffusion models, to improve the performance
of our approach and ultimately achieve our goal of developing a robust and adaptable defect detection
system.

1 Dataset

The dataset used for this project consists of ink-jet printed images of a single template split into three
sections as shown in Figure[I] The sections are structured as follows:
* Section One: Contains two features named "distance one" and "edge roughness one"

* Section Two: Contains two features named "edge roughness two" and "edge roughness
three"

* Section Three: Contains four features named "edge roughness four", "distance six", "dots",
and "angle"
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Figure 1: Template layout of the images in the dataset

1.1 Prompt Generation

We developed three versions of prompts with increasing levels of detail and specificity. Here are
examples for each version, showing the same feature (distance between parallel lines, type one) in
both good and defective conditions:

1.1.1 Version 0 Prompts
These prompts provide a basic description of the feature with or without defects.
Examples for dist. 1:

* Good: “An inkjet-printed image showing optimal quality in the distance between parallel
lines (type one), with no visible defects or irregularities.”

» Defective: “An inkjet-printed image displaying a noticeable defect or irregularity in the
distance between parallel lines (type one).”



1.1.2  Version 1 Prompts

These prompts provide more detail about the expected quality and defects.
Examples for dist. 1:
* Good: “An inkjet-printed image featuring two parallel edges with a consistent gap, repre-

senting distance number one. The gap is precisely measured and uniform, emphasizing
perfect symmetry in the design.”

* Defective: “An inkjet-printed image with a visible defect in two parallel edges with an
inconsistent gap, representing distance number one. The gap varies along the length,
compromising the symmetry of the design.”

1.1.3 Version 2 Prompts

These prompts are the most detailed and provide specific descriptions of the features and defects.
Examples for dist.1:

* Good: “The horizontal distance between two parallel edges. The gap between these edges is
consistently 125.04 pixels across the entire length, indicating a well-defined and defect-free
separation.”

* Defective: “The horizontal distance between two parallel edges is intended to be 125.04
pixels but displays variation along the length. Gaps range less than 125 pixels, indicating a
defect in the spacing.”

2 Methodology

2.1 Problem Formulation

We begin with a dataset D = {(z1, 1), (%2, y2), - - -, (Tn, yn)} Where each image belongs to one of
K classes, classes in our case are the features that we identified previously. y; € {1,..., K}. Our
goal is to classify an image by predicting the most probable class assignment assuming a uniform
prior over classes:

§= argrrégxp(y = yilr) = argn;/%xp(wly =yk) - p(y = yx) = arg nﬁxlogp(ﬂf\y =yr) (1)

Generative classifiers, as introduced by (3)), employ a conditional generative model to approximate
the probability distribution pg(z|y = yi ), where 6 represents the model’s parameters.

2.2 Diffusion Models

The denoising diffusion probabilistic models (DDPMs) (1)) introduce a gradual noise addition process.
For each timestep ¢, given an image x;_1, we can generate a slightly noisier version x; using:

q(XtIth) = N(Xt; vV 1—Bixi—1, 5tI) )

where (3; determines the amount of noise added at each step. The full forward process is defined as:

T
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To efficiently compute x; for any timestep ¢ given the initial image x(, we use:

q(x¢|x0) = N (%45 Varxo, (1 — a)I) “
where @; = HiT:1 a;and o; = 1 — f3;.

In our implementation, we condition these models on text prompts instead of class labels. We generate
these prompts by modifying each label y;, using the method discussed in Section[I.T} These prompts
are then used to condition the U-Net during training.



2.3 Diffusion Generative Classifier

Following (3)), we generate classification decisions by approximating the conditional log-likelihood
log po(x|y = yi) using the diffusion variational lower bound (ELBO).

i = argmaxlog py(aly = ye) ~ argminE, s [w o — Fo(r ye. 1) )
k k

For Stable Diffusion (SD)(2),  is a latent representation obtained by encoding the image using a
VAE. We evaluate the conditional likelihood pg(x|y = yy) for each class y;, € [yx] and assign the
class with the highest likelihood obtained Equation].

This approach, Diffusion Classifier, is theoretically motivated through the variational view of diffusion
models and uses the ELBO to approximate log pg(z|yx). The method chooses the conditioning ys
that best predicts the noise added to the input image, making it effective for zero-shot classification
without additional training.

Our results show that this generative approach attains strong performance on various benchmarks
and outperforms alternative methods of extracting knowledge from diffusion models. The Diffusion
Classifier also exhibits better multi-modal compositional reasoning abilities and effective robustness
to distribution shift compared to discriminative approaches.

3 Results and Discussion

In this section, we examine the performance of our diffusion model in generating images that
accurately represent the characteristics of the original dataset. We carefully evaluate the model’s
ability to generate images of three sections and features, including both normal and defective instances.
This analysis highlights both the strengths and limitations of the stable diffusion model.

3.1 Comparative Analysis of Generated and Original Data

To rigorously assess our model’s proficiency in recreating key features from the original dataset, we
conducted a detailed comparison between generated images and their original counterparts across
three distinct sections of the target object.

Figure 2: Comparison of an original (left) and generated (right) image from section one

Figure 2] shows the model’s ability to create features of section one. This section includes two main
features: distance one and edge roughness one. In the original image, distance one is defective while
edge roughness one is normal. In the generated image, however, distance one is normal, and edge
roughness one shows a defect. This difference shows that the model captures the main characteristics
of defects, but sometimes generates variations.

Figure [3]illustrates section two, comparing an original image from the training data with the generated
version created by our Stable Diffusion Model (SDM). The original image has a defect in edge
roughness two, but edge roughness three is normal. In the generated image, edge roughness two is
normal, but edge roughness three is missing. This difference shows that while the model can generate
complex features, it sometimes misses details.

Figure @] compares section three, which includes four different features. In the original image, defects
appear in edge roughness four and distance number six, while the dots and angle features are normal.



Figure 4: Comparison of an original (left) and generated (right) image from section three

The generated image, however, shows no defects except in the angle feature. This suggests that the
model finds it challenging to replicate multiple defects exactly.

3.2 Comparing Generated Images With and Without Defects

To evaluate the model’s ability to distinguish between normal and defective cases, we provide
examples of generated images with and without defects for different features.

Figure 5: Generated images of feature dots: normal (left) and with defects (right)

Figure 5] shows the model’s skill in creating the *dots’ feature both with and without defects. The
normal dots are clear, and the defective version accurately shows the defect, which highlights the
model’s ability to capture small differences in this feature.

Figure [l demonstrates the model’s ability to generate images with different edge roughness levels
(two and three). The normal image shows both edge roughness features clearly. In the defective
image, however, edge roughness two is missing, which reveals a limitation in generating all defective
features reliably.

Figure[7]illustrates the model’s performance in generating images of distance one and edge roughness
one. The normal image shows no defects, while the defective image accurately represents a defect in
distance one, while edge roughness remains normal. This indicates that the model understands how
to apply specific defects selectively.



Figure 6: Generated images of edge roughness: normal (left) and with defects (right)

"]

Figure 7: Generated images of feature distance: normal (left) and with defects (right)

4 Conclusion

In this study, we set out to develop a diffusion-based framework for defect detection in industrial
quality control. Our initial goal was to leverage the generative capabilities of stable diffusion models
to address the complexity of detecting diverse types of defects across different regions of a product.
However, we encountered significant challenges in obtaining satisfactory results in the first stage of
our proposed two-stage approach.

Despite our efforts, we were unable to achieve the level of performance we had initially anticipated.
The difficulties we faced in obtaining good models in the first stage prevented us from progressing
to the second stage of our planned classification process. This outcome highlights the complexities
involved in applying diffusion models to industrial defect detection and underscores the need for
further research and development in this area.

While we were unable to fully realize our initial objectives, this study has provided valuable insights
into the challenges of implementing diffusion models for quality control applications. The limitations
we encountered suggest that there may be fundamental issues related to data preprocessing, model
architecture, or training strategies that need to be addressed to make these models more effective for
industrial defect detection.

Looking ahead, our future work will focus on overcoming these challenges. We plan to explore
different solutions, including:
1. Significantly increasing the size of our dataset to provide more diverse examples for training
and potentially improve model performance.

2. Investigating alternative data preprocessing techniques to enhance the quality and relevance
of our training data.

3. Exploring other diffusion model architectures that may be better suited to our specific use
case.

4. Developing new strategies to improve the model’s ability to learn and reproduce complex
defect patterns.

Our ultimate goal remains to develop a robust and adaptable defect detection system that can
effectively pass the first stage of our proposed approach and move on to the classification stage. We



believe that by addressing the limitations identified in this study, we can make significant progress
towards realizing the potential of diffusion models in industrial quality control.

This research, despite its challenges, contributes to the ongoing dialogue about the application of
advanced Al techniques in manufacturing. It highlights both the promise and the current limitations
of using generative models for defect detection, paving the way for future innovations in this critical
area of industrial automation.
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